Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Immunol ; 13: 1089064, 2022.
Article in English | MEDLINE | ID: covidwho-2230449

ABSTRACT

Background: Lung inflammation, neutrophil infiltration, and pulmonary vascular leakage are pathological hallmarks of acute respiratory distress syndrome (ARDS) which can lethally complicate respiratory viral infections. Despite similar comorbidities, however, infections in some patients may be asymptomatic while others develop ARDS as seen with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections for example. Methods: In this study, we infected resistant C57BL/6 and susceptible A/J strains of mice with pulmonary administration of murine hepatitis virus strain 1 (MHV-1) to determine mechanisms underlying susceptibility to pulmonary vascular leakage in a respiratory coronavirus infection model. Results: A/J animals displayed increased lung injury parameters, pulmonary neutrophil influx, and deficient recruitment of other leukocytes early in the infection. Moreover, under basal conditions, A/J neutrophils overexpressed primary granule protein genes for myeloperoxidase and multiple serine proteases. During infection, myeloperoxidase and elastase protein were released in the bronchoalveolar spaces at higher concentrations compared to C57BL/6 mice. In contrast, genes from other granule types were not differentially expressed between these 2 strains. We found that depletion of neutrophils led to mitigation of lung injury in infected A/J mice while having no effect in the C57BL/6 mice, demonstrating that an altered neutrophil phenotype and recruitment profile is a major driver of lung immunopathology in susceptible mice. Conclusions: These results suggest that host susceptibility to pulmonary coronaviral infections may be governed in part by underlying differences in neutrophil phenotypes, which can vary between mice strains, through mechanisms involving primary granule proteins as mediators of neutrophil-driven lung injury.


Subject(s)
COVID-19 , Lung Injury , Murine hepatitis virus , Pneumonia , Respiratory Distress Syndrome , Mice , Animals , Neutrophils , Peroxidase , Mice, Inbred C57BL , SARS-CoV-2 , Proteins
2.
JCI Insight ; 7(15)2022 08 08.
Article in English | MEDLINE | ID: covidwho-1902170

ABSTRACT

Older people exhibit dysregulated innate immunity to respiratory viral infections, including influenza and SARS-CoV-2, and show an increase in morbidity and mortality. Nanoparticles are a potential practical therapeutic that could reduce exaggerated innate immune responses within the lungs during viral infection. However, such therapeutics have not been examined for effectiveness during respiratory viral infection, particular in aged hosts. Here, we employed a lethal model of influenza viral infection in vulnerable aged mice to examine the ability of biodegradable, cargo-free nanoparticles, designated ONP-302, to resolve innate immune dysfunction and improve outcomes during infection. We administered ONP-302 via i.v. injection to aged mice at day 3 after infection, when the hyperinflammatory innate immune response was already established. During infection, we found that ONP-302 treatment reduced the numbers of inflammatory monocytes within the lungs and increased their number in both the liver and spleen, without impacting viral clearance. Importantly, cargo-free nanoparticles reduced lung damage, reduced histological lung inflammation, and improved gas exchange and, ultimately, the clinical outcomes in influenza-infected aged mice. In conclusion, ONP-302 improves outcomes in influenza-infected aged mice. Thus, our study provides information concerning a practical therapeutic, which, if translated clinically, could improve disease outcomes for vulnerable older patients suffering from respiratory viral infections.


Subject(s)
COVID-19 , Communicable Diseases , Influenza, Human , Nanoparticles , Orthomyxoviridae Infections , Animals , Humans , Lung/pathology , Mice , Monocytes , SARS-CoV-2
3.
J Heart Lung Transplant ; 40(3): 169-171, 2021 03.
Article in English | MEDLINE | ID: covidwho-1002543

ABSTRACT

We are entering 2021 with an expanding and effective COVID-19 vaccine armamentarium. Recent interim results from COVID-19 vaccine trials, including more than 80,000 participants worldwide, demonstrate remarkable efficacy and low rate of serious adverse events. Based on experience with other vaccines in transplant recipients and knowing the risk of severe COVID-19 in this population, we believe that COVID-19 vaccines provide potential benefit with minimal risk. We strongly support and encourage COVID-19 vaccination of our transplant recipients.


Subject(s)
COVID-19 Vaccines/pharmacology , COVID-19/prevention & control , Organ Transplantation , Pandemics , SARS-CoV-2/immunology , Transplant Recipients , Vaccination/methods , COVID-19/epidemiology , Humans
4.
Pharmacol Ther ; 221: 107745, 2021 05.
Article in English | MEDLINE | ID: covidwho-922109

ABSTRACT

While COVID-19, the disease driven by SARS-CoV-2 has ignited interest in the host immune response to this infection, it has also highlighted the lack of treatment options for the damaging inflammatory responses driven by pathogens that precipitate the acute respiratory distress syndrome (ARDS). With the global prevalence of SARS-CoV-2 and the likelihood of a second winter spike alongside seasonal flu, the need for effective and targeted anti-inflammatory agents is even more pressing. Here we discuss the aetiology of COVID-19 and the common signalling pathways driven by SARS-CoV-2, namely p38 MAP kinase. We highlight that p38 MAP kinase becomes elevated with increasing age, thereby driving many of the inflammatory pathways that precipitate death in old people with the added drawback of impairing vaccine efficacy in this susceptible age group. Finally, we review drugs available to inhibit p38 MAP kinase, their risks-versus-benefits as well as suggested dosing regimen to combat over-exuberant innate immune responses and potentially reverse vaccine inefficacy in older patients.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , MAP Kinase Signaling System/drug effects , Pneumonia/drug therapy , Protein Kinase Inhibitors/therapeutic use , Respiratory Distress Syndrome/drug therapy , Anti-Inflammatory Agents/pharmacology , COVID-19/epidemiology , COVID-19/immunology , Clinical Trials as Topic/methods , Humans , Immunity, Innate/drug effects , Immunity, Innate/immunology , MAP Kinase Signaling System/physiology , Pneumonia/epidemiology , Pneumonia/immunology , Protein Kinase Inhibitors/pharmacology , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/immunology
5.
Eur Respir J ; 56(6)2020 12.
Article in English | MEDLINE | ID: covidwho-841061

ABSTRACT

Cellular senescence permanently arrests the replication of various cell types and contributes to age-associated diseases. In particular, cellular senescence may enhance chronic lung diseases including COPD and idiopathic pulmonary fibrosis. However, the role cellular senescence plays in the pathophysiology of acute inflammatory diseases, especially viral infections, is less well understood. There is evidence that cellular senescence prevents viral replication by increasing antiviral cytokines, but other evidence shows that senescence may enhance viral replication by downregulating antiviral signalling. Furthermore, cellular senescence leads to the secretion of inflammatory mediators, which may either promote host defence or exacerbate immune pathology during viral infections. In this Perspective article, we summarise how senescence contributes to physiology and disease, the role of senescence in chronic lung diseases, and how senescence impacts acute respiratory viral infections. Finally, we develop a potential framework for how senescence may contribute, both positively and negatively, to the pathophysiology of viral respiratory infections, including severe acute respiratory syndrome due to the coronavirus SARS-CoV-2.


Subject(s)
Cellular Senescence , Respiratory Tract Infections/pathology , Respiratory Tract Infections/virology , Virus Diseases/pathology , Virus Diseases/virology , Humans , Lung/pathology
6.
J Immunol ; 205(2): 313-320, 2020 07 15.
Article in English | MEDLINE | ID: covidwho-530300

ABSTRACT

Aging impairs immunity to promote diseases, especially respiratory viral infections. The current COVID-19 pandemic, resulting from SARS-CoV-2, induces acute pneumonia, a phenotype that is alarmingly increased with aging. In this article, we review findings of how aging alters immunity to respiratory viral infections to identify age-impacted pathways common to several viral pathogens, permitting us to speculate about potential mechanisms of age-enhanced mortality to COVID-19. Aging generally leads to exaggerated innate immunity, particularly in the form of elevated neutrophil accumulation across murine and large animal studies of influenza infection. COVID-19 patients who succumb exhibit a 2-fold increase in neutrophilia, suggesting that exaggerated innate immunity contributes to age-enhanced mortality to SARS-CoV-2 infection. Further investigation in relevant experimental models will elucidate the mechanisms by which aging impacts respiratory viral infections, including SARS-CoV-2. Such investigation could identify therapies to reduce the suffering of the population at large, but especially among older people, infected with respiratory viruses.


Subject(s)
Aging/pathology , Betacoronavirus/physiology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Respiratory Tract Infections/virology , COVID-19 , Cardiovascular Diseases/pathology , Cardiovascular Diseases/virology , Cytokines/immunology , Humans , Influenza, Human/immunology , Influenza, Human/pathology , Pandemics , Respiratory Tract Infections/pathology , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL